

Procedura ricostruzione paesaggio tramite drone RTK e Agisoft Metashape

Consiglio Nazionale delle Ricerche

Istituto di Scienze Marine

Davide Vernazzani, Renato Tonielli e Marcello Felsani

Indice

•	Importazione foto da drone RTK in Agisoft Metashape Pro	3
-	Posizionamento e sistema di riferimento	4
•	Creazione del modello	8
-	Creazione della nuvola di punti e del modello 3D	8

Indice delle figure

Figura 1.1 - Preferenze avanzate Metashape	3
Figura 1.2 – Pannello per l'esportazione del formato CSV	4
Figura 1.3 - Software CONVERGO	5
Figura 1.4 – Impostazione dei dati in output	6
Figura 1.5 – Importazione dati corretti	7
Figura 2.1 – Rappresentazione schematica del flusso di lavoro	8

• Importazione foto da drone RTK in Agisoft Metashape Pro

La prima operazione da effettuare nel software Agisoft Metashape è necessario impostare i parametri di importazione delle immagini. Nel pannello *Metashape preferenze* è necessario fleggare alcune caselle che nello standard non risultano attive, per ottenere dai metadati delle foto anche i dati RTK e avere a disposizione tutte le informazioni necessarie.

Dal menu strumenti – preferenze – avanzate e fleggare le impostazioni come da foto:

Generale	GPU	Rete	Aspetto	Navigazi	ione Avanzat	p		
Files Pr	rogetto							
V 1	lantieni i	punti chi	ave					
V 1	lantieni k	mappe	di profondi					
c	Conserva	i percors	i assoluti d	elle immagi	ni			
Esport	a / Impor	ta						
	ogli le est	tensioni d	lei files dai	nomi delle	immagini			
V 0	arica cali	brazione	fotocamer	a da file m	etadati XMP			
V 0	arica ang	joli di orie	entamento	immagine (da file metadati :	XMP		
V 0	arica pos	izione pr	ecisa Punto	di Ripresi	a da file metada	ti XMP		
v a	arica sco	stament	GPS/INS	ia file met	adati XMP			
	arica le n	niniature	da file met	adati FXIF				
	arica dal	DDC es	hallitari da f					
		I KPC Sa	tellitari da i	e i Ali dus	allidi i			
Impost	tazioni Va	rie						
🗸 4	bilita la s	uddivisio	ne delle att	ività di live	ello eccellente			
V 4	bilita il su	pporto V	BO per Op	enGL				
A	bilita la g	enerazio	ne delle MI	P map				
V 4	bilita la c	onsole a	vanzata di l	Python				
1	looia ultin	na desciz	ione forma	per una n	uova forma			
Dimens	sione dell	a cache d	iella marcoa	di haser	100MB	÷	Cancella	
	Rito	cchi		P	ulisci Progetti	Riprist	ina Tutte le Impostazio	ni

Figura 1.1 - Preferenze avanzate Metashape

Attivate le singole impostazioni, possiamo importare le foto, scattate con un drone RTK, sul software.

- Posizionamento e sistema di riferimento

Primo controllo da fare subito dopo l'importazione è il posizionamento del drone rispetto all'area di rilievo.

Aprendo le impostazioni Georeferenze (l'ultima finestra in alto nel box Georeferenze sulla sinistra, icona con la tipica chiave delle impostazioni), ci accorgiamo che il sistema di riferimento non è corretto, operazione che sarà effettuata a posteriori. Il sistema di riferimento di default è WGS84, i voli in RTK sono però riferiti al sistema ETRF2000 in cui la posizione X e Y coincide al WGS84 mentre la quota Z è riferita al Geoide. Per risolvere questo problema si dovrà eseguire le seguenti operazioni:

- 1. Aprire esporta georiferimenti (*figura 1.2*), nel riquadro Georeferenze ed esportare le georeferenze in una cartella specifica; in questo modo stiamo esportando i dati EXIF contenuti nelle fotografie, ovvero tutte le informazioni sul posizionamento.
- 2. Subito dopo aver scelto la cartella, il software ci apre una finestra

Camere	Marcatori	Misure campione
Delimitatore	Colonne	
Tabulazione	V Salva posizione	Salva precisione posizione
Punto e virgola	Salva rotazione	Salva precisione rotazione
💽 Virgola	Salva errori	Salva valori stimati
Spazio	Salva la Varianz	a Salva flag abilitato
Altro:	Precisione:	6

Figura 1.2 – Pannello per l'esportazione del formato CSV

Da questo riquadro possiamo scegliere l'oggetto dal quale stiamo esportando le informazioni, ovvero le camere; scegliere il delimitatore dei campi, ed in particolare in basso a destra la precisione. In questo modo salviamo le informazioni latitudine, longitudine e quota Ellissoidica (WGS84) mentre per una corretta ricostruzione fedele abbiamo bisogno della quota Geoidica riferita al LMM.

- 3. Il file .txt generato dall'esport non corrisponde esattamente a ciò che ci necessita quindi deve essere editato con un semplice editor (noi consigliamo Notepad++ che fra gli editor di testi è il più efficiente. Il file contiene un Header, che possiamo cancellare, contiene il nome della foto, lat, long, quota ellissoidica e gli errori x, y, z di posizionamento RTK delle singole immagini. Si deve eliminare la riga di Header e controllare se sono presenti tutti i campi e quindi salvare le modifiche.
- 4. Con il software CONVERGO*(nota) seleziono il file .txt. Seleziono in input ETRF 2000 o 89 (i due sistemi sono equivalenti anche al WGS84 quando la posizione è espressa in gradi) quindi controlliamo di avere ETRF come Coordinate Geografiche, che abbiamo selezionato coordinate Ellissoidiche e nel fuso giusto.

INPUT	(epsg: 6706)			1	OUTPUT	(epsg: 6708)	
Geografiche	Piane	Seleziona file	Elimina voce	Opzioni	Geografiche	Piane	
ETRS89 2	ETRS89	Intera cartella	Svuota lista	Sistema catastale	ETBS89 [7]	ETRS89	
€ ETRF2000	C UTM-ETRE2000	File da trattare:		C ETRE2000	UTM-ETRF200		
C ETRF89	C UTM-ETRF89	C:\Users\gianc\Desk	top\Foto RTK\Foto_6	C ETRF89	C UTM-ETRE89		
C ROMA40	C Gauss-Roana		C ROMA40	C Gauss-Boaga			
C ED50	C UTM-ED50				C ED50	C UTM-ED50	
SIST. CATASTALE	∩ (Siena)				SIST. CATASTALE	C (Siena)	
QUOTA	 € Ellissoidica E00 Geoidica C Non modificare 				QUOTA :	 ⊂ Elissoidica E00 i Geoidica ⊂ Stessa di input 	
Fuso proiezione	C 32 G 33 C 34 C Automatico C Fuso "12"				Fuso proiezione	 ○ 32 ○ 33 ○ 34 ○ Fuso Italia ○ Fuso "12" 	
	G. Currentich	Codice EPSG del siste	ma dei file di input:			C character	
Origine longitudini	C Roma M.M.	J.		Vedi	Origine longitudini	C Roma M.M.	
Formato file con	liste di coordinate	C Altra cartella	Nomi per i file di outpu Suffisso al nome	Imposta	Formato file con	liste di coordinate	
Codice	Nord Est Quo	Suffisso output: U	00-33	Codice Est Nord.Quo			

Figura 1.3 - Software CONVERGO

Un controllo importante è quello di verificare, in basso a sinistra nell'area input, il formato file con liste di coordinate. Si deve fare attenzione all'ordine di dati per leggere correttamente il file. Inoltre, settare correttamente il separatore di campi.

ampi standard:	
•	Attiva campi standard
Ordine dei dati	Separatore fra i campi
Vintero del punto	C Spazio o tabulazione
• Lat, Lon	C Punto e virgola (;)
C Lon, Lat	(Virgola (,)
Paquota	C Pipe () Da sistema
Punto decimale	Unità di misura per gli angoli
Punto (,)	Sessadecimali (mezzo grado = 0.50)
C Virgola (,) Da sistema	Sessagesimali (mezzo grado = 0.30)
ormati speciali:	Attiva formati speciali
	Aggiungi Modifica Elimina
-	

Figura 1.4 – Impostazione dei dati in output

Nell'area Output setteremo coordinate piane (formato accettato da Metashape) con sistema UTM-ETRF89 con quota Geoidica, impostando correttamente il fuso.

- 5. Infine in basso a destra premiamo su converti lista FILE
- 6. Apriamo il nuovo file controlliamo e lo rinomiamo con il nome del nuovo sistema di riferimento e il nome scelto da noi.
- 7. Riaprendo il file ci accorgiamo che non sono presenti le correzioni RTK lungo x, y e z (perché CONVERGO li ignora), quindi dal vecchio file .txt ci copiamo le colonne delle correzioni e le incolliamo sul nuovo file (l'editor di testo consigliato NotePad++)
- 8. Su Metashape andiamo sempre nel riquadro Georiferimenti, l'icona importa georiferimenti, si importa l'ultimo file aggiornato con il giusto sistema di riferimento, con le quote geoidiche e con le correzioni RTK su x,y e z.
- 9. Si aprirà una finestra

Impo	rta CSV														×
Siste	ma di Coordinate														
RDI	12008 / UTM zone 33	IN (N-E) (EPSG::6	5708)											i.	-
Anac	li di rotazione:					mbar	data, Be	ecch	eggio, Rollio					•	-
	Ignora etichette				Sc	oglia	(m):								
Delin	nitatore		Colonne												
	Tabulazione		Etichetta: 1		¢	Precisione				Rol		tazione Precis		Precision	e
	Punto e virgola		Verso Est:	2	¢	5		\$	Imbardata:						
2	Virgola		Verso Nord:	3	¢	5		¢	Beccheggio:			÷			Ċ,
	Altro		Altitudine:	4	\$	6		\$	Rollio:						¢
	Combina delimitator	i consecutivi								F	lag ab	oilitati:			
inizia a	importare dalla riga:	1 🗘										Ogget	ti: T	utti	•
Antepr	ima delle prime 20 rig	he:													
	Etichetta	Verso Est	Verso	Nord		4	Altitudir	ne	so Nord	Prec	isic	titudi	ne Pr	ecisio	
1	DJI_2024011109	695178.765	4534926	.254		37.12	28		0.0110500	0000		0.0134	9000	00	0
2	DJI_2024011109	695176.937	4534927	.909		37.12	21		0.0110300	0000		0.0135	8000	00	C
3	DJI_2024011109	695171.247	4534933	.305		37.22	25		0.0110100	0000		0.0135	0000	00	C
4	DJI_2024011109	695165.554	4534938	.733		37.32	22		0.0110400	0000		0.0135	2000	00	0
5	DJI_2024011109	695159.818	4534944	.111		37.41	10		0.0109800	0000		0.0134	6000	00	٥
0														,	
				ОК		Ani	nulla								

Figura 1.5 – Importazione dati corretti

Qui possiamo vedere come il sistema di riferimento automaticamente è cambiato, perché Metashape ha riconosciuto le coordiinate. Ora dobbiamo selezionare l'oggetto sul quale vogliamo importare le coordinare (nell'immagine dov'è il cerchio rosso è impostato su *Tutti* cambiare su *Camere*) le giuste colonne sulle quali il software deve andare a leggere le informazioni, quindi Est – Nord - Altitudine - Precisione EST - Precisione Nord - Precisione Altitudine. Come ultima procedura lasciare non contrassegnato l'icona *Ignora etichette* (nell'immagine il cerchietto blu), questo permette al software di sostituire i dati rispetto ai dati già esistenti. • Creazione del modello

Una volta importate le foto, correttamente georeferenziate, si può iniziare la procedura di creazione del modello tridimensionale che ricostruisce il paesaggio indagato.

Il software *Metashape* ci mette a disposizione una serie di tools che permettono la creazione di quest'ultimo, primo tra tutti viene effettuato l'allineamento delle foto, ovvero il software, tramite l'apposito tools *aligns photos* (Figura 2.1), nella sezione Workflow, si occupa di allineare i fotogrammi ottenuti dal video, in modo da poter avere una sequenza di frame che segue la navigazione del volo simulato.

Figura 2.1 – Rappresentazione schematica del flusso di lavoro

- Creazione della nuvola di punti e del modello 3D

Tramite il tools *built point cloud* (Figura 2.1), nell'apposita tendina workflow, viene creata una nuvola di punti. I punti generati sono il risultato dell'intersezione delle ortofoto importate ed allineate, ovvero data la sovrapposizione dei punti dovuta al punto di vista del volo, il software riesce a generare, dall'elaborazione delle geometrie dei soggetti osservati, una nuvola di punti corrispondenti alla posizione del soggetto osservato. Una volta ottenuta la geometria dei punti si genera il modello tramite il tools build model (Figura 2.1). Tale modello grezzo viene poi rielaborato una volta creata la texture, dal comando built texture (Figura 2.1) che genera una texture in grado di visualizzare l'oggetto con le immagini originali (si ricorda che la texture è già presente nel software che riconosce i colori presenti sulle foto scattate).